大数据、人工智能与法律职业的前景
与其螳臂当车,不如放手拥抱 法律是人类最古老的学科,人类历史上第一部成文法典《汉穆拉比法典》出现在3800多年以前。而无论是以阿兰·图灵(Alan Turing)于1950年第一次提出“机器能否思考”这个问题作为起点,还是以1956年达特茅斯会议上数学家约翰·麦卡锡(John McCarthy)第一次提出“Artificial Intelligence(AI)”这个术语作为发端,人工智能都只有60多年的历史。且这60多年间经历了好几次大起大落,其取得突破性进展则是最近几年的事情。 人工智能的发展正改变人类社会的交往方式、组织结构和商业模式,并且对法律职业产生了直接冲击。早在“人工智能”这个词汇出现之前,将人类的工作自动化,即用机器替代人的劳动就已经成为无数科学家努力的方向。一开始是用机器取代人的体力劳动,现在是取代人的脑力劳动。诺伯特·维纳(Norbert Wiener)在20世纪40年代末出版《控制论》时,就已经有很多人在讨论这个问题了。 如果说当时的机器取代人类的脑力劳动还相去甚远,那如今利用互联网所产生的海量数据进行深度学习的机器却离这个目标越来越近了。我们谈人工智能的时候显然有两个关键词:一是“人工”,二是“智能”。 但是,人工智能用机械和电子的方式来模拟人类智能,它在取得突破性进展之后是可以复制的。一个人工智能产品可以批量生产的这种可复制性就导致了它对人类的职业、人类劳动产生非常大的冲击。 法律和医学一直以来都是人类社会各种职业当中的塔尖职业,因为这两种职业的技能都需要经过长时间的学习和训练才能够掌握,都有很高的准入门槛,从业者都受到严格的法律和伦理规范的约束。但是,人工智能目前正猛烈地冲击这两个职业,大数据精准医疗和法律人工智能产品正在改变着这两种职业的未来前景。 同样地,学习法律的人也是在学习一套相对封闭的概念和原理。起源于古罗马时代和亨利二世时代的英国的法律概念,直到今天,我们法律人每天都还在学习和应用。如果我们单纯地用法教义学的方法来学习法律,就很难应对周围正在发生的天翻地覆的变化。而作为社会秩序的维护者,法律人适应这种变迁的意愿和能力往往都比较弱。专门评论互联网和人工智能问题的一位非常著名的公共知识分子和媒体人克莱·舍基(Clay Shirky)说过:“制度和机构是为解决具体的社会问题而设立的,而它们总是试图不让这些问题得到彻底解决,从而维护自己存在的合理性。”他是在批判法律人的保守性,因为法律人试图用固有的一套框架、机构和程序来规范整个社会,包括规范突飞猛进的科技。在他看来,这种保守性可能会在整个社会发生急剧变迁的时代带来很多问题。作为制度化和机构化的动物,法律人每每试图关上自己所不熟悉的大门,努力用自己所熟悉的概念和思维框架来限定技术革新正在带来的各种新的可能性。但这种努力与其说可以力挽狂澜,不如说更像是螳臂当车。更加可行的态度是向新技术敞开心扉,积极投入它所带来的各种新的职业场景,在参与过程中去理解它,充分利用它所创造出来的新机会,同时留意它所带来的各种新风险。正如驯服一匹马的最好方法是骑上它,而不是挡在它前面一样,驯服人工智能的最好方法也是在驾驭中控制它。 现在很多讨论都是非常悲观地预测人工智能将会如何取代人的劳动,使人失去工作,但在我看来其实人工智能会开放出很多新的就业机会。人工智能会取代很多就业岗位,但只要我们能够不断地更新自己的知识结构,它会开放出更多的就业机会。 实际上,一些有远见的法律人早已行动起来。比如被大成合并的美国德同(Dentons)早在2016年就创建了自己的人工智能实验室Nextlaw Labs。它与IBM公司的认知技术平台“沃森”(Watson)合作,一起开发了法律人工智能产品——ROSS。这是目前市场上比较成熟的法律人工智能产品之一,已经在数十家国际律所和中国的几家红圈所测试使用。 此外,包括戴维律所在内的许多大型律所都已经设置了一种新的职位叫首席知识官,或者叫首席技术官。其主要工作是投资、购买和使用法律知识产品。购买、应用这种产品就意味着律所会解雇一批从事案头工作的律师。这在美国已经成为一个非常明显的事实。首席知识官会带领一个团队专门从事本所的数据库建设和人工智能产品的投资开发与调配。这表明一种新的法律职业——法律知识工程师正在兴起。我国目前也有明显迹象。近几年的司法改革,在客观上导致了大量法官和检察官投身大数据和人工智能行业。例如,华宇元典、上海的贝格数据、阿里的法务部门和安全部门都吸收了大量辞职的法官和检察官。这个迹象同时也表明法律人工智能产品正在大量地替代律师。很多的律所都会花巨资去购买法律人工智能产品,而不是招聘新的律师。这对同学们来说是一个坏消息,但也是一个好消息。因为以前大家的选择面都很小,要么去公、检、法,要么去做律师,但以后法科毕业生完全可以进入其他行业如大数据公司,而且不只是进入法务部,甚至可以进入生产部门和程序员一起设计更加符合法律规则的人工智能产品。在我看来,法律知识工程师就是一种全新的职业,它不是一个概念,它已经变成了一个现实。 人工智能在法律职业中的应用现状 下面举三个美国的例子来说明人工智能在法律职业中的现有应用现状。 第一个是电子取证。这里的“取证”不是狭义的诉讼过程中的取证,而是包括诉讼和交易环节的对事实素材的整理和相关性分析,是广义的取证。现在大量的交易是在网上完成的,有大量的交易记录,像这样的东西都属于电子取证,都是人工智能产品需要去分析的对象。非诉业务当中也要保存大量的事实,以帮助完成报税、合规审查、上市准备、商业谈判、交易等工作。这种工作在美国已经有非常成熟的产品,有一家叫Brainspace的公司所开发的产品Discovery就可以帮助当事人完成对事实素材的整理。以前一个大企业想完成一年的报税往往需要很大的团队,花一两个月的时间才能够完成相关数据的整理,但是如果利用Discovery这样的人工智能产品就可以在一两天的时间内把所有的数据整理出来。最新一代的产品Discovery 54还增加了中文、日文和韩文等多种东方语言的阅读功能,从而大大提高了跨国法律业务当中的取证能力。随着自然语言处理(Natural Language Processing,NLP)技术的发展,这个领域的产品可以覆盖的语言种类也会越来越多。 第二个是诉讼管理。美国Casetext公司专门开发的案件分析研究助理(Case Analysis Research Assistant,CARA),可以帮助律师和企业法律顾问完成从案例法规分析到陪审员的选择直到法庭辩论文书生成等一系列任务。其最终出来的产品就是一份正式的法律文书,律师或者公司法人代表拿到这样的文书,就可以直接出庭应诉或者完成一项交易。这样的产品不仅在美国越来越多,在中国也会越来越多。 此外,更加著名的就是前文提到的基于IBM Watson平台开发的人工智能产品——ROSS。它的主要功能就是进行法律研究(legal research)。法律研究不是指学术研究,而是指所有的法律职业人士都必须做的法条、司法解释、判例的搜索和研读工作。无论从事的是诉讼业务还是非讼业务,都需要花费大量的时间来研究法条和判例,从而形成相应的“诉讼策略”或“交易策略”。法律研究是传统律师业务中最耗费工时的工作。据说,ROSS系统可以替代目前美国律师70%的法律研究工作,而且准确率高达90%以上,远远高于顶尖法学院毕业生从事同类工作的准确率。 当然,目前主要由律所合伙人从事的人际沟通工作和法官的判断工作还无法被机器所取代。但这里的“无法”不是指技术上不可能,而是指我们人类还不能够放心让机器去代替我们作判断。如果我们放心,实际上机器人可能比人类法官更加准确、更加公正,因为它不带有人类的感情。亚里士多德说过一句名言:“法律是摒除了激情的理性!”但是,任何人类的决策者都不可能完全摒除情感,机器显然比人类更能够做到不带情感地去作判断。所以如果放心让机器人去当法官,它是可以胜任的,在技术上也是可以实现的。此外,还有一个责任问题,即如果机器人作了判断,那到底谁来承担责任?像这样的问题都使我们还“无法”把这个判断工作交给机器人。 ROSS系统不仅可以作法律研究,还可以把研究结果生成简报或者备忘录,或者律师所使用的其他文件。如果把它用到法院,直接生成判决书也没有问题。 这方面走在前面的是贵州省高级人民法院(以下简称贵州省高院)。贵州省高院使用上海贝格数据有限公司所开发的人工智能产品,可以做到直接生成判决书。在判决书当中需要人类去把关的部分,它会特别标注出来,法官只要对标注出来的这些部分再修改就可以了。这说明现在的人工智能系统甚至可以直接形成一个最终的判决书,这正是很多的法律人特别是目前法学生所担心的问题。显然,人工智能可能会取代很多法律人的工作。美国法学院毕业生通过律师执业资格考试后,一般都会从初级律师开始做起。经过7~10年才可能升为合伙人。这个阶段的主要工作就是法律研究,也就是所谓的案头工作。以前这种工作需要大量的律师花费大量的时间去完成,而随着越来越多的美国律所购入人工智能产品,他们对从事案头工作和法律研究工作的律师的需求会越来越小。根据美国律师协会的数据,从2005年到2015年,申请法学院的人数在美国减少了40%,而且这个趋势还在持续。同时大家也可以想象,以后将会有越来越多的企业选择购买这样的产品,而不是聘请律师来为自己提供法律服务,这将极大地改变法律服务行业的图景。这种冲击一个是内部的,另一个是外部的。内部是律所本身会去购买人工智能产品,外部是潜在的客户也会去购买人工智能产品。这种内外夹击就会使目前大家所熟悉的律师工作的空间越来越狭小。 第三个是合同起草和合同审核。起草和审核合同是企业法律顾问面对的主要工作之一,现代商务世界的复杂使这项工作十分耗费时间和精力。美国LawGeex公司专门开发了有深度学习能力的人工智能产品。它通过对海量真实合同的学习掌握了生成高度精细复杂并结合具体情境的合同的能力。它起草的合同不仅远超照搬合同范本的结果,甚至好于很多有经验的公司法律顾问的作品。 未来已来 在互联网早期,人们普遍认为互联网会极大地拓展人的自由,认为互联网是不能被规制的,因为在互联网上发声的都是匿名的。当时有一句话说:当你在网络上说话的时候,没人知道你是一只狗还是一个人。 在未来,所有人只要下载一个App就可以控制自己家里的所有电器,从冰箱、洗衣机到整个照明系统。但是,这就意味着可能你自己都不了解自己家里面正在发生什么,而其他人可以了解,因为你家里的所有电器时刻都在向网络传送着各类信息。我参加过中德高端论坛,参会者很多是来自德国各部部长。他们的议题本来是全球化与反全球化,与人工智能没有关系,但是几乎所有的德国人都在讨论人工智能问题。他们提出了很多概念,比如,全世界冰箱联合起来,那么超市就会知道你家里面缺什么。它不仅知道你缺什么,也知道你在不在家,使用冰箱的频率是多少,然后可能在将来的某一天不用你去下单,超市就会直接把你需要的东西送到家门口,而你不会拒绝,因为你发现这正是你所需要的。 在这样的背景下,法律职业其实是很不幸的。在我看来,它是一个最容易被人工智能取代的行业,因为人工智能与法律思维有着很强的表面相似性。世界上的两大法系,分别强调演绎和归纳的重要性,而这与人工智能领域的两大流派(符号主义的编程法和神经网络)分别对应。神经网络可以学习海量的人类经验实现归纳,而早在神经网络出现之前,符号主义的编程法已经可以模拟人的演绎推理。 今天,人工智能已经可以从人脑无从把握的海量数据中自行搜索并进行深度学习,可以说它在经验归纳方面也具有超越人脑的能力。因此,无论强调法律是逻辑还是经验,计算机都可以替代人类,法律职业在技术上是最容易被替代的。但同时它也可能是最难被替代的,因为所有的国家决策者基本上都是法律人,法律人不会让自己被替代,我们会设计出各种各样的规则来阻止人工智能技术替代法律。 互联网大数据和人工智能 何谓大数据?所谓大数据不是指量大,它指的是海量存储分析和处理技术。它包括三个层次的含义。一是物理层次,涉及数据量的产生速度和多样性,也就是所谓的三维。二是分析技术层次,大数据分析技术能够很快完成所谓的数据融合,在很短的时间内赋予非结构化的数据以一定的结构,从而能够为决策和行动提供非常明确的参照。三是社会层次,大数据之大在于它改变了现有的生活方式、消费习惯、城市管理、交通管理、医疗卫生、教育科研和国家治理等社会方方面面。
主要问题就是可能激化社会矛盾。人工智能时代的到来,会使两极分化越来越严重。人工智能时代的技术发展太快了,法律是远远滞后于科技和它所带来的相关商业模式的变化的。 (编辑:上饶站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |