理解数据类型:每个数据科学爱好者都应该了解的数据结构
1. 数值数据 用数字所衡量表述的数据,进一步分为两种表示形式:
2. 分类数据 只能表示可能类别中一组特定的数据。也称为枚举、因子或名词性因子。
那么问题来了,为什么需要了解这些数据类型呢?因为不知道数据类型,将会不知道如何应用正确的统计方法处理这类数据。举例来说,如果数据框中有一列有序号数据,就必须要进行预处理,在Python中,scikit-learn包提供了一个序号编码器来处理序号数据。 下一步是深入研究结构化数据,以及如何使用第三方工具包和库来操作这些结构。我们主要有两种类型的结构或数据储存模型:
矩形数据 数据科学中大多数的分析对象都是针对二位矩形数据(如数据框、电子表格、CSV文件或是数据库表格)完成。 矩形数据主要由表示数据类型的行和表示列的变量/特性组成。数据框是一种特殊的数据结构,采用表格格式,提供了高效的数据操作可能。数据框是最常用的数据结构,下方是一些重要的定义:
关系数据库表将一个或多个指定的列作为索引,本质上是行号查询。这可以极大程度地提高某些数据库的查询效率,在Panda dataframe中,可以根据行的顺序自动创建一个整数索引。在Pandas中还可以设置多层次索引提高操作效率。 (编辑:上饶站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |