【独家】消费金融大数据分析方法与金融大数据分析师养成
副标题[/!--empirenews.page--]
2016年10月25日晚,清华大数据“应用·创新”系列讲座——“消费金融大数据分析方法与金融大数据分析师养成”在清华大学FIT楼多功能厅成功举办,本期讲座邀请到瑞天欣实数据科技公司创立人之一杨子君博士。杨子君博士持有美国南加大(USC)电子与计算机工程博士学位,以及清华大学电子工程系学士和硕士学位,之前为全球征信Experian公司首席科学家,以及FICO的高级数据科学家,她是信用风控体系、金融产品和数据分析建模专家,拥有16年数据挖掘和分析行业经验。 杨博士从“小消费大金融”VS“小金融大消费”的区别入手,对金融的本质、风险量化、数据价值的衡量等进行深入阐述,引申出金融大数据分析师的定义问题的基本素质,作为金融数据分析师不仅要知其然还要知其所以然,为大家做出了精彩的分享。 信贷和消费的发展 美国的信贷发展史上,最早有真正消费透支意义的信用卡是70年代的VISA卡。他们通过测试发现信用卡易于赚钱,就在这个实验的基础上发了大量的卡。卡直接寄到家门口,打开就可以刷。但不到几个月的时间就产生了很多坏账。在那之前的美国信用卡法案没有强制信用调查,基本上卡寄到马上可以刷。这次出现大量坏账后美国出台了一些信用卡的法案,规定使用信用卡的人一定要申请,并且一定要调查信用。这是消费金融的真正起步。 美国刚刚走出了2008年底的金融危机,这是由次贷危机引起的。我们有一个衡量美国人信用风险指数的数据,是通过美国三亿消费者在这十年间每一笔的信用贷款综合而成的。每个债务是微观性的,从这个微观怎样整合到经济的指数,它的基础就是金融大数据。 这次金融危机可以说对于美国这种纯信用式的消费金融冲击并不大。这次规律跟以往完全不一样,以前的金融危机在房贷上并没有造成什么影响,而是失业率带来了其他的债务。但美国这次金融危机房贷风险非常高,纯信用类消费的风险反而不是特别高。 美国这次金融危机导致了房地产非常大的风险。因为大家没有失业的风险,手里比较有钱,而杠杆率成倍的放大使之成为一个很好的投资手段。但这次杠杆率的放大比以前每一次都高,造成了比较严重的金融危机。美国的房贷危机可以说化解了,也可以说没有完全化解,因为当时银行收回的房产非常多,如果一下子都推向市场的话会引起房价断崖式的下降,因此这些房产处置的非常慢,有些现在还存在于市场中。这些房产基本要通过10年的时间去消化,这样才有可能化解风险,这一决策的背后有很多金融大数据支撑。 ? RetailFinance vs. Consumer Finance 消费金融有两个概念,一个是“小消费大金融”,一个是“大消费小金融”。“大消费小金融”的模式叫做RetailFinance,零售金融。什么叫零售金融?它是来促进零售的。它完全绑定消费产品和消费场景,先消费后买单。也就是说大消费、小金融的金融属性是为了促进消费。 ? 消费金融的风险及盈利 消费金融,顾名思义,金融还是我们的本质,消费只不过是一个形容词。那么我们一定要了解金融的本质,金融的本质就是风险和盈利。如果不能基础地分析这种金融的盈利模式和风险,那么这种产品就有可能是庞氏骗局。 定价和成本是分不开的。如果是基于成本定价,那么对金融产品来说很关键的就是风险成本。如果价格不能覆盖成本肯定是不能盈利的,尤其是在大量的消费者产生批量效应的时候。这时要保证风险的设计不仅对一个人管用,并且对一千万个人管用。因此成本计算中最难的还是在风险上,因为风险会根据市场、宏观经济以及其它各种各样的情况和环境改变。 但通常来说这种定价不是简单的基于成本的,尽管风险是很核心的因素。另一个在金融定价中也很重要的要素是渠道,也就是我们通常所说的场景。渠道的管理非常重要,对于不同的渠道可能有不同的达到最优化定价的目的和手段。 (编辑:上饶站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |