加入收藏 | 设为首页 | 会员中心 | 我要投稿 上饶站长网 (https://www.0793zz.com.cn/)- 数据库平台、视觉智能、智能搜索、决策智能、迁移!
当前位置: 首页 > 大数据 > 正文

迎接5G时代,远传电信借助AI预测模型动态优化网络流量

发布时间:2020-08-21 18:11:48 所属栏目:大数据 来源:网络整理
导读:一个夏日的夜晚,台湾远传电信在台南某地区网络流量突然暴增,发出告警,没有人预料到夜半时分的台南会迎来流量高峰。调查发现,当时TikTok刚刚在台南兴起,很多年轻人热衷于睡前用手机刷短视频,导致夜半时分的网络流量陡升。 为了更精准地提前掌握网络流
副标题[/!--empirenews.page--]

一个夏日的夜晚,台湾远传电信在台南某地区网络流量突然暴增,发出告警,没有人预料到夜半时分的台南会迎来流量高峰。调查发现,当时TikTok刚刚在台南兴起,很多年轻人热衷于睡前用手机刷短视频,导致夜半时分的网络流量陡升。

为了更精准地提前掌握网络流量,让流量调度最优化,远传在2018年加入微软亚洲研究院“创新汇”,成为微软长期的AI战略合作伙伴,期望通过双方的紧密合作,运用微软在AI领域突破性的技术成果,结合远传长期布局物联网产业应用、大数据平台建设,以及强大的ICT整合实力,让双方的创新研发能力与行业经验形成优势互补。

远传与微软合作的重要成果之一,包含共同研发的AI网络流量预测模型,可以精准预测未来一周中每15分钟内核心基站、二级基站以及OTT服务的流量,实现网络流量的智能动态配置。

优化全网性能,需要智能流量预测

远传一直致力于为用户提供多元化、丰富的优质体验和创新应用服务。远传电信总经理井琪表示:“电信行业竞争激烈,远传很早就启动了转型计划,确定了‘大人物’战略,即借助大数据、人工智能、物联网技术去转型和创新。远传的AI策略是由内而外的:对内进行员工AI培训、培养AI人才、逐步强化AI产品;对外针对消费者和企业级客户,提供‘大人物’解决方案。通过内外兼具的AI策略,给客户提供最好的服务。”

台湾地区的电信用户的网络使用量在全球名列前茅,经常会发生上文所提到的网络流量需求大增的情况,如何进行最有效的调度并优化网络,尤为关键。

在加入微软亚洲研究院创新汇以后,远传电信就着手收集公司各部门的痛点,并与微软亚洲研究院一起率先开启智能流量预测方面的探索。远传电信的工程师提出,希望设计一个智能流量预测模型,可以预测核心基站、二级基站的流量,以及每个基站上Top 100网站等OTT服务的流量。

由于不同地区用户的喜好不同,基站位置也不同,A地区的用户可能偏爱某些短视频应用,而B地区的用户则爱用某些游戏或视频网站,就会使每个基站的流量因用户的偏好存在相当大的差异。如果有了AI流量预测模型,就可以有效判断网络用户的上网行为,预测出某一地区、某一时段的用户可能使用的应用服务、观看的节目、进行的游戏,进而将用户所喜欢的内容推送到离他最近的网络节点上,甚至将用户常用的应用程序部署在靠近用户一端的节点上,大幅降低网络延迟,提升用户体验。此外,智能流量预测也能为远传电信5G基站选址提供更精准的依据。

传统的预测模型只能针对核心大基站进行线性的全流量预测,只有少量第三方的开源工具可以针对具体的网络应用流量进行预测,但准确率不高,无法提供有效的指导。“对于AI来说,做预测恰恰是它的强项,”微软亚洲研究院副院长刘铁岩博士表示,“近年来微软亚洲研究院通过‘创新汇’项目与行业领军企业合作,在金融、物流、医疗等领域都发挥出了AI的巨大潜能。我们相信,AI也一定能够在优化电信网络、智能预测流量、提升电信服务性能等方面发挥独特作用,成为赋能电信领域的核心技术支撑。”

突破四大挑战,破解流量预测难题

经过4个多月的努力,双方合作研究的AI流量预测模型效果显著:核心基站的EPG总流量预测准确率达99%;二级基站的eNB总流量预测准确率达90.5%;针对Top 100网站等OTT服务流量预测准确率达74%;可精准预测未来一周每15分钟内的流量。据微软亚洲研究院首席研究经理边江博士介绍,针对具体的网络环境,研究员们从四个方面突破挑战,通过AI技术大大提升了不同层级基站上不同服务的流量预测准确率。

其一,创新神经网络实现超长序列建模。流量趋势具有明显的周期性,或天、或周、或月的某个时间段的某个应用服务会出现高峰,因此长时间序列模型的训练更容易找到其中的规律。而传统基于统计的方法不能有效利用较长时间的数据,对此,微软亚洲研究院采用了跨层链接的扩张循环神经网络(Dilated RNN+Skip Connections),在局部对数据进行跳跃式选取,确保了模型可以利用长时间数据进行建模。

其二,流量峰值预测,把握分寸最重要。为了达到最优的效果,AI技术不仅需要精准预测出某段时间流量高峰的来临,而且还要确保预测的偏差值要稍微高于峰值,让流量配置有适当的冗余,但预测峰值也不宜过高,以免造成带宽资源的浪费。研究员们采用了两个函数来保证预测偏差值处于最佳状态,一个确保整体预测的准确度,另一个针对实际应用环境,将峰值适当向上偏移。在不同的网络环境下,两个函数进行加权组合,确保相应场景下的最合适的预测准确率。

其三,数据抖动和噪声需正则化处理。不同基站上不同服务的属性差别相当大,例如一线城市需要经常访问海外搜索网站,三、四线城市对视频、游戏类应用的需求较大,不同属性的流量数据存在巨大差异,有着较大的抖动和噪声,而且部分数据的比例缺失,不利于模型学习。基于此,微软亚洲研究院针对不同基站节点和服务的数据进行正则化处理,使得在不同时间点训练模型时,数据都可以在相对一致的分布区间,保证模型在不同时间、不同信号上都能做到更加精确的学习。

其四,AI技术与行业洞察相结合,更精准。基于远传电信专业人员的行业经验,双方建立了一个知识库,与多层次智能预测模型结合使用。例如运营人员会有些常规经验总结,类似A应用一般在中午12点左右出现流量高峰、B搜索网站的峰值可能会是晚上7、8点钟等,行业洞察和经验积累与预测模型动态加权,更好地保证了整体流量预测的准确率。

授人以鱼不如授人以渔

事实上,在解决业务难题的同时,微软亚洲研究院希望通过合作“授之以渔”,帮助合作伙伴具备AI的思维和能力。远传电信执行副总裁饶仲华表示:“远传电信一直在寻找将时间序列融入到机器学习中的突破点。此次超长建模的实现,让远传电信更好地掌握了将时间序列与神经网络模型关联的方法,这样的模型算法并不只局限于流量预测上,只要数据丰富,有大量的时间序列,举一反三之后,类似的AI模型可以解决更多与时间序列有关的业务问题。”

除此之外,远传电信对机器学习所需的数据也有了进一步的了解,对数据的收集、处理与存储也形成了较为系统的方法。“过去,我们认为原始数据只要做了数据清洗之后就可以使用,但事实远比想象的复杂,其中数据的收集手段、存储时间、规模大小、处理过程都会影响数据的品质,影响机器学习的训练进程,”远传电信执行副总裁饶仲华表示。以AI流量预测模型为例,预测周期为15天时,需要连续3、4个月的数据;周期为一年,就需要3、4年的数据,而并不是一个月或一年的数据就足够。“在与微软研究员的探讨中,我们也形成了良好的数据收集方式,为将来的AI模型训练奠定高质量的数据基础。”

数字化转型,心态和文化是核心

一直以来,远传电信都将用户体验放在第一位,希望可以让用户享受到更高质量的网络服务,提升用户满意度。

(编辑:上饶站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读