机器学习的正则化是什么意思?
发布时间:2019-10-16 09:07:34 所属栏目:经验 来源:佚名
导读:经常在各种文章或资料中看到正则化,比如说,一般的目标函数都包含下面两项 其中,误差/损失函数鼓励我们的模型尽量去拟合训练数据,使得最后的模型会有比较少的 bias。而正则化项则鼓励更加简单的模型。因为当模型简单之后,有限数据拟合出来结果的随机性
以线性回归中的梯度下降法为例。假设要求的参数为θ,hθ(x)是我们的假设函数,那么线性回归的代价函数如下: 那么在梯度下降法中,最终用于迭代计算参数θ的迭代式为: 其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子: 其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。 最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。 最后再补充一个角度:正则化其实就是对模型的参数设定一个先验,这是贝叶斯学派的观点。L1正则是laplace先验,l2是高斯先验,分别由参数sigma确定。在数据少的时候,先验知识可以防止过拟合。 举两个最简单的例子。 (编辑:上饶站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |